A real number θ is a root of the equation 7cos2x+4cosx−1=0. If pcos2θ+qcos2θ+r=0 where p,q,r are real constants then r can be
Open in App
Solution
7cos2θ+4cosθ−1=0cosθ=−4±√42−4(7)(−1)2(7)=−4±√16+2814=−4±√4414=−4±2√1114=−2±2√117 cos2θ=2cos2θ−1cos2θ=2(−2±√117)2−1cos2θ=249(−2±√11)2−1=249(4+11±4√11)−1=2(15±4√11)−4949=60±8√11−4949=−19±8√1149cos22θ=(−19±8√1149)2 pcos22θ+qcos22θ+r=0p(−19±8√1149)2+q(−19±8√1149)+r=0−19±8√1149=−q±√q2−4(p)(r)2p By comparing we get 2p=49 p=492...(i) −19=−q→q=19→(ii)±√64811=±√q2−4pr±√704=±√q2−4pr⇒704=q2−4pr704=192−4(492)r704=361−98r98r=361−704r=−34398r=−3.5...(iii) ⇒pcos22θ+qcos2θ+r=0492cos22θ+19cos2θ−3.5=0→(iv) Multiplying (iv) by (ii) ⇒49cos22θ+38cos2θ−7=0→(v)From(iii)p=49q=38r=−7.