wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A real number θ is a root of the equation 7cos2x+4cosx1=0. If pcos2θ+qcos2θ+r=0 where p,q,r are real constants then
r can be

Open in App
Solution


7cos2θ+4cosθ1=0cosθ=4±424(7)(1)2(7)=4±16+2814=4±4414=4±21114=2±2117
cos2θ=2cos2θ1cos2θ=2(2±117)21cos2θ=249(2±11)21=249(4+11±411)1=2(15±411)4949=60±8114949=19±81149cos22θ=(19±81149)2
p cos22θ+q cos22θ+r=0p(19±81149)2+q(19±81149)+r=019±81149=q±q24(p)(r)2p
By comparing we get 2p=49
p=492...(i)
19=qq=19(ii)±64811=±q24pr±704=±q24pr704=q24pr704=1924(492)r704=36198r98r=361704r=34398r=3.5...(iii)
p cos22θ+q cos2θ+r=0492cos22θ+19cos2θ3.5=0(iv)
Multiplying (iv) by (ii)
49cos22θ+38cos2θ7=0(v)From (iii) p=49 q=38 r=7.

flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon