A rectangular tank of dimensions 24 m×12 m×8 m is dug inside a rectangular field 600 m long and 200 m broad. The earth take out is evenly spread over the field. By how much will rise the level of the field rise?
Given:
The dimensions of rectangular tank =24 m×12 m×8 m
⇒ Volume of rectangular tank (Cuboid) =24 m×2 m×8 m
Dimensions of rectangular field =AB(l),=600 m, CD(b)=200 m
Let, the rise of the level of the field be h.
Volume of cuboid AEIC=AE×EI×h
=576×200×h
Volume of FHID=FH×FI×h
=188×24×h
Since, volume of earth dug ⇒24 m×12 m×8 m=576×200×h+188×24×h
⇒24 m×12 m×8 m=24h(4800+188)
⇒24 m×12 m×8 m=24h(4988)
⇒3×8=1247h
⇒h=241247
h=0.0192 m
Hence, rise of the level of the field is 0.0192 m.