The correct option is
B 20Given: Area
=96 cm2 and Perimieter =48cm
Let a,b,c be the sides of a right triangle, with c as hypotenuse.
Area=12ab=96
ab=192
b=192a
Perimeter=a+b+c=48
c=48−a−b
From Pythagoras Theorem,
c2=a2+b2
(48−a−b)2=a2+b2
2304+(a+b)2−96(a+b)=a2+b2
2304+a2+b2+2ab−96(a+b)=a2+b2
2304+2ab−96a−96b=0
Divide by 2,
1152+ab−48a−48b=0
1152+a(192a)−48a−48(192a)=0
1344−48a−9216a=0
48a2−1344a+9216=0
a2−28a+192=0
a=16 and a=12
There are 2 possibilities as we have 2 perpendicular side
If, a=16, b=192a=19216=12
If, a=12, b=192a=19212=16
If, a=12 then b=16 or if b=12 then a=16
It doesn't make a difference while computing c
c2=a2+b2
c2=144+256=400
c= Hypotenuse =20 cm