The correct option is B 9b2
asecθ+btanθ=1,asecθ−btanθ=5a+bsinθcosθ=1a+bsinθ=cosθ.....(i)a−bsinθcosθ=5a−bsinθ=5cosθ.......(ii)addingequation(i)and(ii)a+bsinθ=cosθa−bsinθ=5cosθ2a=6cosθa=3coθ,a2=qcos2θputtingthevalueobtained(ii)3cosθ−bsinθ=5cosθ−2cosθ=bsinθ−2cotθ=b,b2=4cot2θthena2(b2+4)=9cos2θ[4(1+cot2θ)]=36cos2θ.cosec2θ=36(cosθsinθ)2=36×cot2θ[⋅.⋅cot2θ=b24]=364b2=9b2