The correct option is B 1415
When a spherical/circular body of radius r rolls without slipping, its total kinetic energy is
Ktotal=Ktranslation+Krotation
=12mv2+12Iω2
=12mv2+12I.v2r2 [∵ω=vr]
Let v be the linear velocity and R be the radius for both solid sphere and solid cylinder.
∴ Kinetic energy of the given solid sphere will be
Ksph=12mv2+12Isphv2R2
=12mv2+12×25mR2×v2R2
=710mv2 ...(i)
Similarly, kinetic energy of the given solid cylinder will be Kcyl=12mv2+12Icylv2R2
=12mv2+12×mR22×v2R2=34mv2 ...(ii)
Now, from the conservation of mechanical energy,
mgh=Ktotal
∴ For solid sphere, using Eq. (i)
mghsph=710mv2 ...(iii)
Similarly, for solid cylinder, using Eq. (ii)
mghcyl=34mv2 ...(iv)
Taking the ratio of Eqs. (iii) and (iv), we get
mghsphmghcyl=710mv234mv2⇒hsphhcyl=710×43=1415