The correct option is A (−12,−12,1√2)
Let →a=x^i+y^j+cos45°^k
⇒→a=x^i+y^j+^k√2
Since, →a is a unit vector.
∴x2+y2+12=1
⇒x2+y2=12 ⋯(1)
Now, →a+^i+^j=(x+1)^i+(y+1)^j+^k√2
Since, it is a unit vector.
∴(x+1)2+(y+1)2+12=1⇒(x+1)2+(y+1)2=12⇒x2+y2+2(x+y)=−32⇒x+y=−1 ⋯(2)
From (1) and (2)
x=−12; y=−12
→a=−12^i−12^j+1√2^k