The correct option is C 1600 rad
Given, initial angular acceleration α=2 rad/s2
At t=20 s, angular speed is given by ω=ω0+αt
Here, initial angular speed given as ω0=0
⇒ω=0+2 (rad/s2)×(20 s)=40 rad/s
From t=20 s to t=40 s
ω has uniform value, ω=40 rad/s
In next 20 seconds, it comes to rest.
Hence, from ω=ω0+αt, taking ω=0 and ω0=40 rad/s
0=40+α(20)
or α=−2 rad/s2
Hence, angular displacement in first 20 seconds
θ1=ω0t+12αt2
θ1=0+12×2(rad/s2)×202 (s2)
θ1=400 rad
Displacement in next 20 seconds
Here, uniform angular velocity, hence α=0
θ2=ω0×t
θ2=40(rad/s)×20(s)
θ2=800 rad
Angular displacement in final 20 seconds
θ3=ω0t+12αt2
Here ω0=40 (rad/s)
α=−2( rad/s2)
θ3=40(rad/s)×20s+12×(−2)(rad/s2)×(20)2(s2)
θ3=400(rad)
Therefore, total angular displacement in 60 seconds
θ=θ1+θ2+θ3
θ=400(rad)+800(rad)+400(rad)
θ=1600 rad