Theorem 2: Perpendicular from the Center to a Chord Bisects the Chord
AB and CD are...
Question
AB and CD are two parallel chords of a circle such that AB = 10 cm, CD = 24 cm. If the chords are on opposite sides of the centre and distance between them is 17 cm, the radius of the circle is
A
10 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
11 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
13 cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is B 13 cm Let OP=xcm
∴OQ=(17−x)cm ∵AB=10cm⟹AP=5cm ........... [∵OP is a straight line from centre] In ΔAOP, (OA)2=(AP)2+(OP)2 r2=(5)2+x2 r2=x2+25 ...... (i) ∵CD=24cm⟹CQ=12cm Again in ΔOCQ, (OC)2=(CQ)2+(OQ)2 r2=(12)2+(17−x)2 r2=144+289+x2−34x ....... (ii) From (i) and (ii), we get x2−34x+289+144=x2+25 ⟹34x=408 ⟹x=12cm Substituting the value of x in (i), we get r2=(12)2+25=144+25=169cm2 ⟹r=13cm