The correct option is D 90∘
∠BMN=∠AME=80∘(vert.opp.∠sareequal)
∠BMN+∠MND=180∘(AB∥CD,co−int.∠saresupp)
⇒∠MND=180∘−∠BMN
=180∘−80∘=100∘
MQ bisects ∠BMN⇒∠NMQ=40∘
NQ bisects ∠MND⇒∠QNM=50∘
∴ In ΔMQN,
∠MQN+∠NMQ+∠QNM=180∘
⇒∠MQN+40∘+50∘=180∘
⇒∠MQN=180∘−90∘=90∘.