1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VII
Mathematics
Application of Pythagoras Theorem
ABC is an equ...
Question
ABC is an equilateral triangle. If D is a point on side BC such that BD : BC = 1 : 3, then find
A
D
2
:
A
B
2
.
Open in App
Solution
Given: ABC is an equilateral triangle.
BD =
1
3
BC =
1
3
AB
In
△
A
B
C
,
B
E
=
1
2
B
C
=
1
2
A
B
A
E
2
=
A
B
2
−
B
E
2
⇒
A
E
2
=
A
B
2
−
(
1
2
A
B
)
2
⇒
A
E
2
=
A
B
2
−
1
4
A
B
2
⇒
A
E
2
=
3
4
A
B
2
---(1)
In
△
A
D
E
,
A
E
2
=
A
D
2
−
D
E
2
⇒
A
E
2
=
A
D
2
−
(
B
E
−
B
D
)
2
⇒
A
E
2
=
A
D
2
−
(
1
2
A
B
−
1
3
A
B
)
2
⇒
A
E
2
=
A
D
2
−
(
1
6
A
B
)
2
⇒
A
E
2
=
A
D
2
−
1
36
A
B
2
---(2)
From (1) and (2),
3
4
A
B
2
=
A
D
2
−
1
36
A
B
2
⇒
A
D
2
=
3
4
A
B
2
+
1
36
A
B
2
⇒
A
D
2
=
A
B
2
×
(
27
+
1
36
)
⇒
A
D
2
=
28
36
A
B
2
⇒
A
D
2
=
7
9
A
B
2
A
D
2
:
A
B
2
= 7 : 9
Suggest Corrections
1
Similar questions
Q.
ABC is an equilateral triangle. If D is a point on side BC such that BD : BC =1:3, then Find the ratio
A
D
2
:
A
B
2
.
Q.
ABC is an equilateral triangle. If D is a point on side BC such that BD : BC =1:3, then
A
D
2
:
A
B
2
=
.
Q.
If ABC is an isosceles triangle and D is a point of BC such that AD ⊥ BC, then
(a) AB
2
− AD
2
= BD.DC
(b) AB
2
− AD
2
= BD
2
− DC
2
(c) AB
2
+ AD
2
= BD.DC
(d) AB
2
+ AD
2
= BD
2
− DC
2