wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

ABCD is a cyclic quadrilateral in which :

(i) BC || AD, ADC=110o and BAC=50o. Find DAC.

(ii) DBC=80o and BAC=40o. Find BCD.

(iii) BCD=100o and ABD=70o. Find ADB.

Open in App
Solution

(i) In the figure,

ABCD is a cyclic quadrilateral and AD || BC, ADC=110o

BAC=50o

B+D=180o (Sum of opposite angles)

B+110o=180o

B=180o110o=70o

Now in ΔABC,

CAB+ABC+BCA=180o (Sum of angles of a triangle)

50o+70o+BCA=180o

120o+BCA=180o

BCA=180o120o=60o

But DAC=BCA (Alternate angles)

DAC=60o

(ii) In cyclic quadrilateral ABCD, Diagonals AC and BD are joined.

DBC=80o, BAC=40o

Arc DC subtends DBC and DAC in the same segment.

DBC=DAC=80o

DAB=DAC+CAB=80o+40o=120o

But DAB+BCD=180o (Sum of opposite angles of a cyclic quadrilateral).

120o+BCD=180o

BCD=180o120o=60o

(iii) In the figure, ABCD is a cyclic quadrilateral and BD is joined.

BCD=100o and ABD=70o

A+C=180o (Sum of opposite angles of cyclic quadrilateral)

A+100o=180o

A=180o100o

A=80o

Now in ΔABD,

A+ABD+ADB=180o (Sum of angles of a triangle)

80o+70o+ADB=180o

150o+ADB=180o

ADB=180o150o=30o

ADB=30o


flag
Suggest Corrections
thumbs-up
16
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Circles and Quadrilaterals - Theorem 11
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon