ABCD is a cyclic quadrilateral in which :
(i) BC || AD, ADC=110o and ∠BAC=50o. Find ∠DAC.
(ii) ∠DBC=80o and ∠BAC=40o. Find ∠BCD.
(iii) ∠BCD=100o and ABD=70o. Find ∠ADB.
(i) In the figure,
ABCD is a cyclic quadrilateral and AD || BC, ∠ADC=110o
∠BAC=50o
∵∠B+∠D=180o (Sum of opposite angles)
⇒∠B+110o=180o
∴∠B=180o−110o=70o
Now in ΔABC,
∠CAB+∠ABC+∠BCA=180o (Sum of angles of a triangle)
⇒50o+70o+∠BCA=180o
⇒120o+∠BCA=180o
⇒BCA=180o−120o=60o
But ∠DAC=∠BCA (Alternate angles)
∴∠DAC=60o
(ii) In cyclic quadrilateral ABCD, Diagonals AC and BD are joined.
∠DBC=80o, ∠BAC=40o
Arc DC subtends ∠DBC and ∠DAC in the same segment.
∴∠DBC=∠DAC=80o
∴∠DAB=∠DAC+∠CAB=80o+40o=120o
But ∠DAB+∠BCD=180o (Sum of opposite angles of a cyclic quadrilateral).
⇒120o+∠BCD=180o
⇒∠BCD=180o−120o=60o
(iii) In the figure, ABCD is a cyclic quadrilateral and BD is joined.
∠BCD=100o and ∠ABD=70o
∠A+∠C=180o (Sum of opposite angles of cyclic quadrilateral)
⇒∠A+100o=180o
⇒∠A=180o−100o
∴∠A=80o
Now in ΔABD,
∠A+∠ABD+∠ADB=180o (Sum of angles of a triangle)
⇒80o+70o+∠ADB=180o
⇒150o+∠ADB=180o
⇒∠ADB=180o−150o=30o
∴ ∠ADB=30o