The correct option is
C 120o,60o,120o,60o
⇒ Let ABCD is a rhombus. AC and BD are diagonals such that, AC is equal to all sides of rhombus.
⇒ AB = BC = CD = DA = Diagonal AC.
⇒ In △ABC,
⇒ AB = BC = AC [Given]
∴ △ABC is an equilateral triangle.
⇒ So, ∠CAB = ∠ABC = ∠ACB = 60∘ [Angles of equilateral triangle] --- ( 1 )
⇒ Similarly, in △ADC we get,
⇒ ∠CAD = ∠ADC =∠ACD = 60∘ ----- ( 2 )
⇒ ∠BAD = ∠BAC + ∠CAD = 60∘ + 60∘ = 120∘ -- ( 3 )
⇒ ∠BCD = ∠BCA + ∠ACD = 60∘ + 60∘ = 120∘ ---- ( 4 )
So, from ( 1 ), ( 2 ), ( 3 ) and ( 4 ) we get,
The angles of a rhombus ABCD are 120∘,60∘,120∘,60∘.