Add the following expressions:
(ii) −x2−3xy+3y2+8, 3x2−5y2−3+4xy and−6xy+2x2−2+y2
Step: Find the sum
By grouping the terms having the same literals and adding, we get,
(−x2−3xy+3y2+8)+(3x2−5y2−3+4xy)+(−6xy+2x2−2+y2)
=−x2−3xy+3y2+8+3x2−5y2−3+4xy−6xy+2x2−2+y2
=(−x2+3x2+2x2)+(−3xy+4xy−6xy)+(3y2−5y2+y2)+(8−3−2)
=x2(−1+3+2)+xy(−3+4−6)+y2(3−5+1)+(8−3−2)
=4x2−5xy−y2+3
Hence, the sum of the given terms is 4x2−5xy−y2+3