The correct option is C (2, 32)
Since α,β,γ,δ form an increasing G.P., so αδ=βγ where α<β<γ<δ.
On solving x2−3x+a=0,
we get x=12(3±√9−4a).
Also α<β.
Hence α=12(3−√9−4a),β=12(3+√9−4a)
Similarly from x2−12x+b=0, we get
γ=12(12−√144−4b),δ=12(12+√144−4b)
Substituting these values of α,β,γ,δ in αδ=βγ and simplifying, we get (a,b) = (2,32).