Let the time taken by the aircraft to reach point B be
tFrom figure AM=ABcos45o=1000×1√2=500√2 m
Also AP=ABsin45o=1000×1√2=500√2 m
S-N direction : AM=[Vw+Vswsin(45−α)]t
∴ 500√2=[Vw+Vswsin(45−α)]t .............(1)
W-E direction : AP=[Vswcos(45−α)]t
∴ 500√2=[Vswcos(45−α)]t .............(2)
Equating (1) & (2), Vswcos(45−α)=Vswsin(45−α)+Vw
∴ 400[cos(45−α)−sin(45−α)]=200√2
OR 1√2cos(45−α)−1√2sin(45−α)=12
OR sin(45)cos(45−α)−cos(45)sin(45−α)=12
∴ sin(α)=12 ⟹α=30o
From (2), 500√2=400cos(15)t
∴ 500√2=400×0.966×t ⟹t=1.83 hr