The correct option is
B 12π√A2γMV0(P0+MgA)Let the piston be displaced by small amount
x and the increase in pressure be
ΔP
Initial pressure
P1=P0+MgA
Initial volume
V1=V0
Final pressure
P2=P1+ΔP
Initial volume
V2=V0−ΔV
where,
ΔV=Ax
Applying Adiabatic law, as system is isolated (no heat transfer)
P1Vγ1=P2Vγ2
where,
γ is specific heat ratio.
Substituting the values,
P1Vγ1=(P1+Δp)(V0−ΔV)γ
⇒P1Vγ0=P1Vγ0(1+ΔPP1)(1−ΔVV0)γ
⇒1=(1+ΔPP1)(1−γΔVV0)
⇒1−γΔVV0+ΔPP1−γΔP.ΔVP1V0=1
⇒−γΔVV0+ΔPP1−γΔP.ΔVP1V0=0
Neglecting second order terms,
⇒ΔP=γP1ΔVV0
Restoring force on piston
F=−AΔP
⇒F=−AγP1ΔVV0
Substituting the value of
ΔV,
⇒F=−γAP1V0(Ax)
⇒F=−γA2P1V0x
So, acceleration of piston
a=FM=−(γA2P1MV0)x
Acceleration is proportional to the displacement, therefore motion is simple harmonic.
The angular frequency of oscillation will be
ω=√∣∣ax∣∣
Substituting the value of
a,
ω=√γA2P1MV0
Substituting the value of
P1, frequency
f of oscillation
∴ f=ω2π=12π√γA2MV0(P0+MgA)
Hence, option (b) is correct answer.