∠B is a right angle in △ABC and ¯¯¯¯¯¯¯¯¯BD is an altitude to hypotenuse. AB=8 cm and BC=6 cm. Find the area of △BDC
Given: AB=8;BC=6cm
ABC is a right-angled triangle, right-angled at B.
By Pythagoras theorem, we have
AC2=AB2+BC2
AC2=82+62
AC=√100=10 cm
Let AD=x, then CD=AC−AD=10−x
In right-angled triangle ABD, we have
BD2=AB2−AD2
h2=82−x2 [Suppose BD=h]
h2+x2=64……(i)
In right-angled triangle BDC, we have
BD2=BC2−CD2
⇒h2=62−(10−x)2
⇒h2+(100+x2−20x)=36
⇒h2+100+x2−20x=36
⇒(h2+x2)+100−36=20x
⇒64+100−36=20x [Using eq.(i)]
⇒128=20x
⇒x=12820=6.4
So, CD=10−x=10−6.4=3.6 cm
∴h2+6.42=64
⇒h2=64−40.96
⇒BD=h=√23.04=4.8 cm
Area of triangle BDC=12×base×height
=12×CD×BD
=12×4.8×3.6
=8.64 cm2