The correct option is B 2π3−150(√3)
f(x)=cos−1(−0.49)
f(x)=π−[cos−1(−0.49)]....(1)
g(x)=cos−1(−0.49)
Here x+Δx=0.49
∴x+Δx=0.5+(−0.01)
where x=0.5=12;Δx=−0.01
Now g(x)=cos−1x
∴g(12)=cos−1(12)=π3
And =−1√1−x2
∴g′(12)=−1√1−14=−2√3
∴ Approximate value of g(x)
≅g(x)+g′(x)Δx≅π3+(−2√3)(−1100)≅π3+150√3
(1) becomes as follows
∴ Approximate value of f(x)
≅π−(π3+150√3)≅2π3−150√3