Let P (n) be true for n=m
∴logXm=mlogX
∴P(m+1)=logXm+1
=logXm⋅X=logXm+logX
mlogX+logX=(m+1)logX
Above relation shows that P(n) is true for
n=m+1
Now when n=1,logX1=1logX
n=2,logX2=logX⋅X=logX+logX=2logX
Above relation show that P(n) is true for n=1 and 2
Hence P(n) is universally true.