Byju's Answer
Standard IX
Mathematics
Property 3
Prove that ...
Question
Prove that
x
l
o
g
y
−
l
o
g
z
×
y
l
o
g
z
−
l
o
g
x
×
z
l
o
g
x
−
l
o
g
y
=
1
Open in App
Solution
Let
L
H
S
=
x
log
y
−
log
z
×
y
log
z
−
log
x
×
z
log
x
−
log
y
=
e
log
(
x
log
y
−
log
z
×
y
log
z
−
log
x
×
z
log
x
−
log
y
)
(
∵
e
log
a
=
a
)
=
e
log
x
(
log
y
−
log
z
)
+
log
y
(
log
z
−
log
x
)
+
log
z
(
log
x
−
log
y
)
=
e
(
log
y
−
log
z
)
log
x
+
(
log
z
−
log
x
)
log
y
+
(
log
x
−
log
y
)
log
z
(
∵
log
a
b
=
b
log
a
)
=
e
log
y
.
log
x
−
log
z
+
log
x
+
log
z
log
y
−
log
x
log
y
log
x
log
z
−
log
y
log
z
=
e
o
=
1
=
R
H
S
Suggest Corrections
0
Similar questions
Q.
If x, y, z are positive then minimum value of
x
log
y
−
log
z
+
y
log
z
−
log
x
+
z
log
x
−
log
y
is
Q.
If
x
,
y
,
z
are positive then the minimum value of
x
l
o
g
y
−
l
o
g
z
+
y
l
o
g
z
−
l
o
g
x
+
z
l
o
g
x
−
l
o
g
y
is
Q.
Prove that
x
log
y
−
log
z
.
x
log
z
−
log
x
.
x
log
x
−
log
y
=
1
.
Q.
If
log
x
b
−
c
=
log
y
c
−
a
=
log
z
a
−
b
then prove that
x
b
+
c
.
y
c
+
a
.
z
b
+
a
=
1
.
Q.
Suppose
x
,
y
,
z
>
0
and are not equal to
1
and
log
x
+
log
y
+
log
z
=
0
. What is the value of
x
1
log
y
+
1
log
z
×
y
1
log
z
+
1
log
x
×
z
1
log
x
+
1
log
y
.
(All log functions have base
10
)
View More
Related Videos
Laws of Logarithm with Use
MATHEMATICS
Watch in App
Explore more
Property 3
Standard IX Mathematics
Solve
Textbooks
Question Papers
Install app