At 250oC and 1 atmospheric pressure, the vapour density of PCl5 is 57.9.
Calculate:
(i) Kp for the reaction, PCl5⇌PCl3(g)+Cl2(g) at 250oC
(ii) the percentage dissociation when pressure is doubled.
Open in App
Solution
(i) Molecular mass of PCl5=208.5 Vapour density, D=208.52=104.25 Observed vapour density, d=57.9 Degree of dissociation, α=D−dd=0.80 PCl5⇌PCl3(g)+Cl2(g) At equilibrium: 1−ααα (1−0.8)0.800.80 Total number of moles=1+α=1.80 Partial pressure of PCl5=0.21.80×1=19 Partial pressure of PCl3=0.801.80×1=49 Partial pressure of Cl2=0.801.80×1=49 So, Kp=pPCl3×pCl2pPCl5=1.78 (ii) Let the degree of dissociation be α. At equilibrium. pPCl5=(1−α1+α).P=1−α1+α×2 pPCl3=(α1+α).P=α1+α×2 pCl2==(α1+α).P=α1+α×2 Kp=α1+α×2×α1+α×21−α1+α×2=1.78 or α2=0.891.89 α=0.686