Given systems of equations are:
x2−y3+4=0 ....(1)
x2−5y3+12=0 ...(2)
Now from eq1 and eq2 will get:
3x−2y+24 ...(3)
3x−10y+72 ...(4)
To solve this pair of equations for x and y using cross-multiplication, we arrange the variables x and y and their coefficients a1, a2, b1 and b2, and the constants c1 and c2 as:
x=b1c2−b2c1a1b2−a2b1
y=c1a2−c2a1a1b2−a2b1
⇒x=(−2×72)−(−10×24)(3×10)−(3×−2)
⇒y=(24×3)−(72×3)(3×10)−(3×−2)
⇒x=−144−(240)−30−(−6)
⇒x=96−24=−4
⇒y=72−216−30−(−6)
⇒y=−144−24=6
⇒x=−4,y=6
x+y= 6−4=2