We have,
cosx+cosy=45
cosx−cosy=27
We know that
cosC+cosD=2cos(C+D2)⋅cos(C−D2)
cosC−cosD=2sin(C+D2)⋅sin(D−C2)
Therefore,
2cos(x+y2)⋅cos(x−y2)=45
cos(x+y2)⋅cos(x−y2)=25 …….. (1)
Now,
2sin(x+y2)⋅sin(y−x2)=27
sin(x+y2)⋅sin(y−x2)=17 …….. (2)
From equation (1) and (2), we get
cos(x+y2)⋅cos(x−y2)sin(x+y2)⋅sin(y−x2)=2517
cos(x+y2)⋅cos(y−x2)sin(x+y2)⋅sin(y−x2)=2517
cot(x+y2)⋅cot(y−x2)=145
5cot(x+y2)=14tan(y−x2)
5cot(x+y2)=−14tan(x−y2)
14tan(x−y2)+5cot(x+y2)=0
Hence, the value is 0.