The correct option is D (P)→(2),(Q)→(3)(R)→(1),(S)→(4)
(P)
f(0)=0
Let f(x)=ax2+bx
1∫0f(x) dx=a3+b2=1⇒a=0,b=2;a=3,b=0
Two such polynomials is possible.
(Q)
f(x)=sin(x2)+cos(x2)
x2∈[0,13]
Maximum value of f(x)=√2 and its attans at
sin(x2)=cos(x2)
⇒tan(x2)=1
⇒x2=π4,9π4<13⇒x=±√π2,±3√π2
Hence, there are four points in x∈[−√13,√13]
(R)
I=2∫−23x21+ex dx⇒I=2∫−23x21+e−x dx⇒2I=2∫−23x2(1+ex)1+ex dx⇒2I=2∫−23x2 dx⇒I=8
(S)
(1/2∫−1/2cos2xlog(1+x1−x) dx)(1/2∫0cos2xlog(1+x1−x) dx)
I1=1/2∫−1/2cos2xlog(1+x1−x) dx⇒I1=1/2∫−1/2cos2xlog(1−x1+x) dx⇒2I1=0
Hence,
(P)→(2),(Q)→(3)(R)→(1),(S)→(4)