1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Determinant
1 1 1 a...
Question
∣
∣ ∣ ∣
∣
1
1
1
a
b
c
a
2
b
3
c
3
∣
∣ ∣ ∣
∣
Prove that : =
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
(
a
+
b
+
c
)
.
Open in App
Solution
Now,
∣
∣ ∣ ∣
∣
1
a
a
3
1
b
b
3
1
c
c
3
∣
∣ ∣ ∣
∣
[
R
′
2
=
R
2
−
R
1
and
R
′
3
=
R
3
−
R
1
]
=
∣
∣ ∣ ∣
∣
1
a
a
3
0
b
−
a
b
3
−
a
3
0
c
−
a
c
3
−
a
3
∣
∣ ∣ ∣
∣
=
(
b
−
a
)
(
c
−
a
)
∣
∣ ∣ ∣
∣
1
a
a
3
0
1
b
2
+
a
b
+
a
2
0
1
c
2
+
a
c
+
a
2
∣
∣ ∣ ∣
∣
=
−
(
b
−
a
)
(
c
−
a
)
(
b
2
−
c
2
+
a
(
b
−
c
)
)
=
−
(
b
−
a
)
(
c
−
a
)
(
b
−
c
)
(
a
+
b
+
c
)
=
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
(
a
+
b
+
c
)
.
Suggest Corrections
0
Similar questions
Q.
Prove that
|
⎡
⎢
⎣
1
1
1
a
b
c
a
3
b
3
c
3
⎤
⎥
⎦
| =
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
(
a
+
b
+
c
)
Q.
Prove that
∣
∣ ∣
∣
b
+
c
c
+
a
a
+
b
c
+
a
a
+
b
b
+
c
a
+
b
b
+
c
c
+
a
∣
∣ ∣
∣
=
2
∣
∣ ∣
∣
a
b
c
b
c
a
c
a
b
∣
∣ ∣
∣
.
Q.
Using the property of determinants and without expanding, prove that: