The correct option is C 4(b+c)(c+a)(a+b)
Let Δ=∣∣
∣∣−2aa+ba+cb+a−2ab+cc+ac+b−c∣∣
∣∣=
Putting a+b=0
⇒b=−a
then
Δ=∣∣
∣∣−2a0a+c02ac−ac+ac−a−2c∣∣
∣∣=Expanding along R1
=−2a{−4ac−(c−a)2}−0+(a+c){0−2a(c+a)}
=2a(c+a)2−2a(c+a)2
=0
Hence a + b is a factor of Δ similarly b + c and c + a are the factors of Δ.
On
expansion of determinant we can see that each term of the determinant
is a homogeneous expression in a, b, c of degree 3 and also R.H.S. is a
homogeneous expression of degree 3.
Let Δ=k(a+b)(b+c)(c+a)
or ∣∣
∣∣−2aa+ba+cb+a−2ab+cc+ac+b−c∣∣
∣∣=k(a+b)(b+c)(c+a)
Putting a=0,b=1,c=2, we get
∣∣
∣∣0121−2323−4∣∣
∣∣=k(0+1)(1+2)(2+0)
⇒0−1(−4−6)+2(3+4)=6k
⇒24=6k
∴k=4
Hence ∣∣
∣∣−2aa+ba+cb+a−2ab+cc+ac+b−c∣∣
∣∣=4(a+b)(b+c)(c+a)