wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

∣ ∣ ∣xx2yzyy2zxzz2xy∣ ∣ ∣=(xy)(yz)(zx)(xy+yz+zx)

Open in App
Solution

LHS=∣ ∣ ∣xx2yzyy2zxzz2xy∣ ∣ ∣=1xyz∣ ∣ ∣x2x3xyzy2y3xyzz2z3xyz∣ ∣ ∣
(using (R1xR1 and R2yR2 and R3zR3

=xyzxyz∣ ∣ ∣x2x31y2y31z2z31∣ ∣ ∣ (take out xyz common from C3)

=∣ ∣ ∣x2x31y2x2y3x30z2x2z3x30∣ ∣ ∣ using R2R2R1 and R3R3R1)
Expanding corresponding to C3. we get

=1y2x2y3x3z2x2z3x3=[(y2x2)(z3x3)(z2x2)(y3x3)]


=(y+x)(yx)(zx)(z2+x2+xz)(z+x)(zx)(yx)(y2+x2+xy)=(yx)(zx)[yz2+yx2+xyz+xz2+x3+x2zzy2zx2xyzxy2x3x2y]


=(yx)(zx)[yz2zy2+xz2xy2] =(yx)(zx)[yz(zy)+x(z2y2)]=(yx)(zx)[yz(zy)+x(zy)(z=y)]=(yx)(zx)[(zy)(xy+yz+zx)]=(xy)(yx)(zx)(xy+yz+zx)=RHS.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon