∣∣ ∣ ∣∣xx2yzyy2zxzz2xy∣∣ ∣ ∣∣=(x−y)(y−z)(z−x)(xy+yz+zx)
LHS=∣∣
∣
∣∣xx2yzyy2zxzz2xy∣∣
∣
∣∣=1xyz∣∣
∣
∣∣x2x3xyzy2y3xyzz2z3xyz∣∣
∣
∣∣
(using (R1→xR1 and R2→yR2 and R3→zR3
=xyzxyz∣∣ ∣ ∣∣x2x31y2y31z2z31∣∣ ∣ ∣∣ (take out xyz common from C3)
=∣∣
∣
∣∣x2x31y2−x2y3−x30z2−x2z3−x30∣∣
∣
∣∣ using R2→R2−R1 and R3→R3−R1)
Expanding corresponding to C3. we get
=1∣∣∣y2−x2y3−x3z2−x2z3−x3∣∣∣=[(y2−x2)(z3−x3)−(z2−x2)(y3−x3)]
=(y+x)(y−x)(z−x)(z2+x2+xz)−(z+x)(z−x)(y−x)(y2+x2+xy)=(y−x)(z−x)[yz2+yx2+xyz+xz2+x3+x2z−zy2−zx2−xyz−xy2−x3−x2y]
=(y−x)(z−x)[yz2−zy2+xz2−xy2] =(y−x)(z−x)[yz(z−y)+x(z2−y2)]=(y−x)(z−x)[yz(z−y)+x(z−y)(z=y)]=(y−x)(z−x)[(z−y)(xy+yz+zx)]=(x−y)(y−x)(z−x)(xy+yz+zx)=RHS.