Let the means be x1,x2, _________xm so that 1, x1,x2,...xm, 31 is an A.P. of (m+2) terms.
31=Tm+2=a+(m+1)d=1+(m+1)d
∴d=30m+1 ..(1)
We are given that
x7xm−1=59
∴T8Tm=a+7da+(m−1)d=59
or 9a+63d=5a+(5m−5)d
or 4.1=(5m−68)30m+1 by (1)
or 2m+2=75m−1020
∴73m=1022
∴m=102273=14.