Let the means be x1,x2,........xm so that
1,x1,x2,......xm,31 is an A.P. of
(m+2) terms. 31=Tm+2=a+(m+1)d=1+(m+1)d∴d=30m+1....(1)
We are given that
x7xm−1=59∴T8Tm=a+7da+(m−1)d=59
or 9a+63d=5a+(5m−5)d
or 4.1=(5m−68)30m+1 by (1)
or 2m+2=75m−1020∴73m=1022∴m=102273=14.