The given equations are:
By taking LCM, we get:
⇒ b2x + a2y = (ab)a2 + b2
⇒ b2x + a2y = a3b + ab3 .......(i)
Also, x + y = 2ab........(ii)
On multiplying (ii) by a2, we get:
a2x + a2y = 2a3b.........(iii)
On subtracting (iii) from (i), we get:
(b2 − a2)x = a3b + ab3 − 2a3b
⇒ (b2 − a2)x = −a3b + ab3
⇒ (b2 − a2)x = ab(b2 − a2)
⇒ (b2 − a2)x = ab(b2 − a2)
⇒
On substituting x = ab in (i), we get:
b2(ab) + a2y = a3b + ab3
⇒ a2y = a3b
⇒
Hence, the solution is x = ab and y = ab.