wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

bxa+ayb=a2+b2,x+y=2ab.

Open in App
Solution

The given equations are:

bxa+ayb=a2+b2
By taking LCM, we get:
b2x+a2yab=a2+b2
⇒ b2x + a2y = (ab)a2 + b2
⇒ b2x + a2y = a3b + ab3 .......(i)

Also, x + y = 2ab........(ii)

On multiplying (ii) by a2, we get:
a2x + a2y = 2a3b.........(iii)

On subtracting (iii) from (i), we get:
(b2 − a2)x = a3b + ab3 − 2a3b
⇒ (b2 − a2)x = −a3b + ab3
⇒ (b2 − a2)x = ab(b2 − a2)
⇒ (b2 − a2)x = ab(b2 − a2)
x=abb2-a2b2-a2=ab

On substituting x = ab in (i), we get:
b2(ab) + a2y = a3b + ab3
⇒ a2y = a3b
a3ba2=ab
Hence, the solution is x = ab and y = ab.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon