1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Theorems for Differentiability
By using LM...
Question
By using
L
M
V
T
, prove that
β
−
α
1
+
β
2
<
tan
−
1
β
−
tan
−
1
α
<
β
−
α
1
+
α
2
,
β
−
α
<
0
.
Open in App
Solution
l
e
t
f
(
x
)
=
tan
−
1
x
f
′
(
x
)
=
1
1
+
x
2
A
p
p
l
y
i
n
g
M
e
a
n
V
a
l
u
e
t
h
e
o
r
e
m
o
n
f
(
x
)
i
s
α
<
x
<
β
f
(
β
)
−
f
(
α
)
β
−
α
=
f
′
(
C
)
=
1
1
+
x
2
w
h
e
r
e
α
<
C
<
β
N
o
w
f
′′
(
x
)
=
−
1
(
1
+
x
2
)
2
x
<
0
w
h
e
n
x
>
0
⇒
f
′
(
x
)
i
s
d
e
c
r
e
a
sin
g
f
o
r
x
>
0
H
e
n
c
e
α
<
C
<
β
⇒
f
′
(
α
)
>
f
′
(
C
)
>
f
′
(
β
)
⇒
1
1
+
α
2
>
f
(
β
)
−
f
(
α
)
β
−
α
>
1
1
+
β
2
⇒
β
−
α
1
+
α
2
>
tan
−
1
β
−
tan
−
1
α
>
β
−
α
1
+
β
2
Suggest Corrections
0
Similar questions
Q.
Solve this
(
α
+
1
)
2
(
α
+
1
)
2
−
(
α
+
1
)
(
β
+
1
)
+
(
β
+
1
)
2
(
β
+
1
)
2
−
(
α
+
1
)
(
β
+
1
)
to get
=
α
+
1
α
−
β
+
β
+
1
β
−
α
=
α
−
β
α
−
β
Q.
If
(
α
+
1
)
(
β
−
1
)
+
(
β
+
1
)
(
α
−
1
)
α
+
(
α
−
1
)
(
β
−
1
)
=
0
and
α
(
α
+
1
)
(
β
+
1
)
−
(
α
−
1
)
(
β
−
1
)
=
0
Also let
A
=
{
α
+
1
α
−
1
,
β
+
1
β
−
1
}
and
B
=
{
2
α
α
−
1
,
2
β
β
+
1
}
If
A
∩
B
≠
ϕ
, then find all the permissible value of parameter
"
a
"
.
Q.
Prove that if
α
+
β
=
π
/
4
, then (1 + tan
α
) (1 + tan
β
) = 2
Q.
If
tan
(
α
−
β
)
tan
α
+
sin
2
γ
sin
2
α
=
1
,
then prove that tan
γ
is geometric mean of tan
α
and tan
β
.
i.e., than
α
tan
β
=
tan
2
γ
.
Q.
If
α
,
β
,
γ
are the roots of
x
3
+
q
x
+
r
=
0
then
1
α
+
β
−
γ
+
1
β
+
γ
−
α
+
1
γ
+
α
−
β
=
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Theorems for Differentiability
MATHEMATICS
Watch in App
Explore more
Theorems for Differentiability
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app