wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

By using LMVT, prove that
βα1+β2<tan1βtan1α<βα1+α2,βα<0.

Open in App
Solution

letf(x)=tan1xf(x)=11+x2ApplyingMeanValuetheoremonf(x)isα<x<βf(β)f(α)βα=f(C)=11+x2whereα<C<βNowf′′(x)=1(1+x2)2x<0whenx>0f(x)isdecreasingforx>0Henceα<C<βf(α)>f(C)>f(β)11+α2>f(β)f(α)βα>11+β2βα1+α2>tan1βtan1α>βα1+β2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems for Differentiability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon