By using properties of definite integrals, evaluate the integrals
∫10x(1−x)ndx.
Let ∫10x(1−x)ndx.
⇒I=∫10(1−x){(1−x)1−(1−x)}ndx[∵∫a0f(x)dx=∫a0f(a−x)dx]
=∫10(1−x)xndx==∫10(xn−xn+1)dx
=[xn+1n+1−xn+2n+2]10=[1n+1−1n+2]=0
=(n+2)−(n+1)(n+1)(n+2)=1(n+1)(n+2)