By using properties of definite integrals, evaluate the integrals ∫2π0cos5xdx.
∫2π0cos5xdx=2∫π0cos5xdx(∵∫2a0f(x)=2∫a0f(x)dx, where f(2a−x)=f(x);hence,2a=2x∴cos5(2x−x)=cos5x)=2×0=0(∵∫2a0f(x)=0,if f(2a−x)=−f(x);here2a=π∴cos5(π−x)=−cos5x)
By using properties of definite integrals, evaluate the integrals ∫10x(1−x)ndx.
By using properties of definite integrals, evaluate the integrals ∫π20cos2dx.
By using properties of definite integrals, evaluate the integrals ∫82|x−5|dx.
By using properties of definite integrals, evaluate the integrals ∫π20(2log sinx−log sin2x)dx.