By using properties of definite integrals, evaluate the integrals
∫a0√x√x+√a−xdx.
Let I∫a0√x√x+√a−xdx.I=∫a0√a−x√a−x+√a−(a−x)dx[∵∫a0f(x)dx=∫a0f(a−x)dx]=∫a0√a−x√a−x+√xdx
On adding Eqs. (i) and (ii), we get
⇒2I=∫a0√x+√a−x√a−x+√xdx,2I=∫a01dx=[x]a0=a−0=a⇒I=a2