By using properties of definite integrals, evaluate the integrals
∫π0log(1+cosx)dx.
Let ∫π0log(1+cosx)dx
⇒I=∫π0log{1+cos(π−x)}dx [∵∫a0f(x)dx=∫a0f(a−x)dx]=∫π0log(1−cosx)dx[∵cos(x−x)=−cosx]=∫π0log{2 sin2(x2)}dx[∵1−cosx=2sin2x2]=∫pi0log2dx+2∫π0log(sinx2)dx In the second integral, put(x2=t⇒dx=2dt,
and limits when x=0,t=0 and when x=π,t=π2∴I=log2[x]π0+2∫π20log(sin t)2dt=(log2)(π−0)+4(−π2log2)(∵∫π20log sin x dx=−π2log 2)=−πlog 2