wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

By using properties of definite integrals, evaluate the integrals
π0log(1+cosx)dx.

Open in App
Solution

Let π0log(1+cosx)dx

I=π0log{1+cos(πx)}dx [a0f(x)dx=a0f(ax)dx]=π0log(1cosx)dx[cos(xx)=cosx]=π0log{2 sin2(x2)}dx[1cosx=2sin2x2]=pi0log2dx+2π0log(sinx2)dx In the second integral, put(x2=tdx=2dt,
and limits when x=0,t=0 and when x=π,t=π2I=log2[x]π0+2π20log(sin t)2dt=(log2)(π0)+4(π2log2)(π20log sin x dx=π2log 2)=πlog 2


flag
Suggest Corrections
thumbs-up
14
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon