By using properties of definite integrals, evaluate the integrals
Let ∫π2−π2sin2xdx.
Let ∫π2−π2sin2xdx.
Here,f(x)=sin2xf(−x)=sin2(−x)=[sin(−x)]2=(−sinx)2=sin2x=f(x)∴ f(x) is an even function.I=∫π2−π2sin2xdx=2∫π20sin2xdx[∵∫a−af(x)dx=∫a0f(x)dx,iff(x)iseven]=2∫π20[1−cos2x2]dx(∵cos2x=1−2sin2x)=fπ20(1−cos2x)dx=[x−sin2x2]π20=[π2−sinπ2]−(0−0)=π2−0=π2