By using properties of definite integrals, evaluate the integrals
Show that
∫a0f(x)g(x)dx=2∫a0f(x)dx, if f and g are defined asf(x)=f(a−x) and g(x)+g(a−x)=4
Let I =∫a0f(x)g(x)dx⇒I=∫a0f(a−x)g(a−x)dx⇒I=∫a0f(x){4−g(x)}dx [∵f(x)=f(a−x) and g(x)+g(a−x)=4(given)]
On adding Eqs, (i) and (ii), we get
2I∫a04f(x)dx⇒I=2∫a0f(x)dx.