By using the properties of definite integrals, evaluate the integral ∫40|x−1|dx
Open in App
Solution
I=∫40|x−1|dx It can be seen that, (x−1)≤0 when 0≤x≤1 and (x−1)≥0 when 1≤x≤4 I=∫10|x−1|dx+∫41|x−1|dx,(∵∫baf(x)=∫caf(x)+∫bcf(x)) =∫10−(x−1)dx+∫40(x−1)dx =[x−x22]10+[x22−x]41 =1−12+(4)22−4−12+1 =1−12+8−4−12+1=5