By using the properties of definite integrals, evaluate the integral ∫a0√x√x+√a−xdx
Open in App
Solution
Let I=∫a0√x√x+√a−xdx ............... (1) It is known that, (∫a0f(x)dx=∫a0f(a−x)dx) I=∫a0√a−x√a−x+√xdx ............ (2) Adding (1) and (2), we obtain 2I=∫a0√x+√a−x√x+√a−xdx ⇒2I=∫a01⋅dx ⇒2I=[x]a0 ⇒2I=a⇒I=a2