wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

By using transformation z=logtan(xz) the differential equation y2+cotx×y1+4ycsc2x=0 reduces to

A
y24y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y14y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y2+4y=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C y2+4y=0
We have dzdx=12sec2(xz)tan(xz)=1sinx=cscx

dydx=dydz.dzdx=cscxdydz

d2ydx2=ddx(dydx)=ddz(dydx)dzdx=ddx(cscxdydx)cscx

=(cscd2ydx2cscxcotxdxdzdydz)cscx=cos2xd2ydz2cscxcotxdydz

d2ydx2+cotxdydx+4ycsc2x=0

csc2xd2ydz2cscxcotxdydz+cotxcscxdydz+4ycsc2x=0

csc2x(d2ydz2+4y)m=0d2ydz2+4y=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon