1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XI
Mathematics
Integration to solve modified sum of binomial coefficients
C 0+ C 1 x /2...
Question
C
0
+
C
1
x
2
+
C
2
X
2
3
+
…
C
n
X
n
n
+
1
=
A
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is
D
C
0
+
C
1
x
+
C
2
x
2
+
…
+
C
n
x
n
=
(
1
+
x
)
n
,
i
n
t
e
g
r
a
t
i
n
g
b
o
t
h
s
i
d
e
s
w
i
t
h
r
e
s
p
e
c
t
t
o
x
W
e
g
e
t
,
C
0
x
+
C
1
2
x
2
+
C
2
3
x
3
+
⋯
+
C
n
n
+
1
x
n
+
1
=
(
1
+
x
)
n
+
1
n
+
1
+
k
P
u
t
x
=
0
i
n
a
b
o
v
e
,
k
=
−
1
(
n
+
1
)
T
h
e
r
e
f
o
r
e
C
0
x
+
C
1
2
x
2
+
C
2
3
x
3
+
⋯
+
C
n
n
+
1
x
n
+
1
=
(
1
+
x
)
n
+
1
n
+
1
−
1
n
+
1
Suggest Corrections
2
Similar questions
Q.
If
(
1
+
x
)
n
=
C
0
+
C
1
x
+
C
2
x
2
+
.
.
.
.
.
C
n
x
n
then
3
C
0
+
3
2
C
1
2
+
3
3
C
2
3
+
3
4
C
3
4
+ ....+
3
n
+
1
C
n
n
+
1
=
4
n
+
1
−
1
n
+
1
Q.
If
(
1
+
x
)
n
=
C
0
+
C
1
x
+
C
2
x
2
+
.
.
.
+
C
n
x
n
then show that
n
!
x
(
x
+
1
)
(
x
+
2
)
(
x
+
3
)
.
.
.
(
x
+
n
)
=
C
0
x
−
C
1
x
+
1
−
.
.
.
+
(
−
1
)
n
C
n
x
+
n
.
Q.
If
(
1
+
x
)
n
=
C
0
+
C
1
x
+
C
2
x
2
+
.
.
.
.
.
.
+
C
n
x
n
, prove that
C
0
C
r
+
C
1
C
r
+
1
+
.
.
.
.
.
.
+
C
n
−
r
C
n
=
(
2
n
)
!
(
n
+
r
)
!
(
n
−
r
)
!
Q.
If
(
1
+
x
)
n
=
C
0
+
C
1
x
+
C
2
x
2
+
.
.
.
.
.
.
.
+
C
n
x
n
, then
C
1
C
0
+
2
C
2
C
1
+
3
C
3
C
2
+ ........+
n
C
n
C
n
−
1
=