The correct option is A n2n−1
C1+2C2+3C3+......+nCn=n+2×n(n−1)2!+3×n(n−1)(n−2)3!+....+n×1=n+2×n(n−1)1+3×n(n−1)6+....+n=n+n(n−1)1+n(n−1)2+.....+n=n[1+n−11+n(n−1)2+.....+1]=n[1+n−11!+n(n−1)2!+.....+1]putn−1=N=n[1+N1!+N(N+1)2!+.....+1]=n(NC0+NC1+NC2+....+NCN)=n2N=n2n−1Hence,theoptionAisthecorrectanswer