The correct option is C (a+1)(a−4)(a+3)2
2a2−a−3(a2+6a+9)×a2−8a+16(2a−3)(a−4)
Factor of 2a2−a−3=2(a+1)(a−32)
Factor of a2+6a+9=(a+3)(a+3)
Factor of a2−8a+16=(a−4)(a−4)
So, (a+1)(2a−3)(a+3)(a+3)×(a−4)(a−4)(2a−3)(a−4)
= (a+1)(2a−3)(a+3)2×a−42a−3
= a+1(a+3)2×(a−4)
= (a+1)(a−4)(a+3)2