Calculate the simultaneous solubility of AgSCN and AgBr.
(Ksp(AgSCN)=1.1×10−12, Ksp(AgBr)=5×10−13)
A
4×10−7mol/LAgBr; 9×10−7mol/LAgSCN
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
9×10−7mol/LAgBr; 4×10−7mol/LAgSCN
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
8×10−7mol/LAgBr; 18×10−7mol/LAgSCN
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
18×10−7mol/LAgBr; 8×10−7mol/LAgSCN
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A4×10−7mol/LAgBr; 9×10−7mol/LAgSCN Let aM be the solubility of AgSCN and bM be the solubility of AgBr. AgSCN⇌Ag+a+CNS−b AgBr⇌Ag+b+Br−b [Ag+]=(a+b) [CNS−]=a [Br−]=b
Ksp(AgCNS)=[Ag+][CNS−] 1×10−12=(a+b)a......(i)
Ksp(AgBr)=[Ag+][Br−] 5×10−13=(a+b)b.....(ii)
Dividing equation (i) by equation (ii), we get ab=1×10−125×10−13=2 a=2b or b=a2 Substittue the value of (a) in (i), (a+b)a=10−12 (2a+b)2b=10−12 4b2+2b2=10−12 b=4.08×10−7 This is the solubility of AgBr. Substitute the value b=a2 in equation (i), (a+b)a=10−12 (a+a2)a=10−12 3a2=2×10−12 a=8.16×10−7M This is the solubility of AgSCN.