The correct option is B 1.9×10−5 M
Let "s" be the solubility of Ag+ in the buffer solution.
On dissolution silver remains as Ag+ but CN− ions are converted mostly to HCN due to fixed acidity of the buffer.
Ka=[H+][CN−][HCN]Or,[HCN][CN−]=[H+]Ka=10−36.2×10−10=1.6×106
As each CN− ion hydrolyses to yield one HCN.
s=[Ag+]=[CN−]+[HCN]
From the ratio of [HCN]/[CN−] we see , [CN−]<<[HCN]. So, s=[Ag+]=[HCN]
Thus from the equation (1) we have ,
[CN−]=s1.6×106Ksp=[Ag+][CN−]
2.2×10−16=s×s1.6×106s=[Ag+]=1.87×10−5 M
Alternate solution :
Let "s" be the solubility of Ag+ in the buffer solution.
The equilibrium reaction of AgCN is given below:
AgCN(s)⇌Ag+(aq)+CN−(aq)..(1)
s s−x
CN−(aq)+H+(aq)1(Ka)HCN⇌HCN(aq)−−−−(2)
s c 0
s−x c−x x
HCN is a weak acid. So, Ka will be very small. Hence, 1(Ka)HCN is very high i.e., equilibrium shifts in the forward direction
∴s−x≈0→s≈x
Adding equations (1) and (2) :
AgCN(s)+H+(aq)KspKa⇌Ag+(aq)+HCN(aq)
c−s s sKspKa=s2c−s2×10−166×10−10=s20.001−s3.33×10−7=s20.001−s(3.33×10−10)−(3.33×10−7)s=s2s2+(3.33×10−7)s−(3.33×10−10)=0s=−(3.33×10−7)±√(3.33×10−7)2−4×1×(−3.33×10−10)2×1s=−(3.33×10−7)+√(3.33×10−7)2−4×1×(−3.33×10−10)2×1s=(−3.33×10−7)+√1.33×10−92s=(−3.33×10−7)+3.64×10−52s=1.9×10−5 M.