Choose the correct answer in the given question. ∫x2ex3dx. (a)13ex3+C(b)13ex2+C(c)12ex3+C(d)12ex2+C
Let I=∫x2ex3dx Put x3=t⇒3x2=dtdx⇒dx=dt3x2 ∴I=13∫etdt⇒I=13et+C=13ex3+C Hence, correct option is (a)
Choose the correct answer in each of the question. ∫dxx(x2+1) equals (a)log|x|−12log(x2+1)+C(b)log|x|+12log(x2+1)+C(c)−log|x|+12log(x2+1)+C(d)12log|x|+log(x2+1)+C
Choose the correct answer in the given question. ∫√1+x2dx is equal to (a)x2√1+x2+12log∣∣x+√1+x2∣∣+C(b)23(1+x2)32+C(c)23x(1+x2)32+C(d)x22√1+x2+12x2log|x+√1+x2|
Choose the correct answer in the given question. ∫√x2−8x+7dx is equal to (a)12(x−4)√x2−8x+7+9log|x−4+√x2−8x+7|+C(b)12(x+4)√x2−8x+7+9log|x+4+√x2−8x+7|+C(c)12(x−4)√x2−8x+7−3√2log|x−4+√x2−8x+7|+C(d)12(x−4)√x2−8x+7−92log|x−4+√x2−8x+7|+C
The anti-derivative of (√x+1√x) equals (a)13x13+2x12+C(b)23x23+12x2+C(c)23x32+2x12+C(d)32x32+12x12+C