The given matrix is,
A=[ 1 sinθ 1 −sinθ 1 sinθ −1 −sinθ 1 ]
The determinant of the given matrix is,
| A |=1( 1+ sin 2 θ )−sinθ( −sinθ+sinθ )+1( sin 2 θ+1 ) =1+ sin 2 θ+ sin 2 θ− sin 2 θ+1+ sin 2 θ =2( 1+ sin 2 θ )
As it is given that, 0≤θ≤2π, then multiply this inequality by sinθ,
0≤sinθ≤1 0≤ sin 2 θ≤1 1≤1+ sin 2 θ≤2 2≤2( 1+ sin 2 θ )≤4
Thus, it can be observed that | A |∈[ 2,4 ]
Therefore, option (D) is correct.
Choose the correct answer.
Let, where 0 ≤ θ≤ 2π, then
A. Det (A) = 0
B. Det (A) ∈ (2, ∞)
C. Det (A) ∈ (2, 4)
D. Det (A)∈ [2, 4]