Choose the correct answer.
The value of ∫10tan−1(2x−11+x−x2)dx is(a)1(b)zero(c)−1(d)π4
Let I=∫10tant−1(2x−11+x−x2)dx=∫10tant−1(x+(x−1)1−x(x−1))dx∫10{tan−1x+tan−1(x−1)}dx [∵ tan−1A+tan−1B=tan−1(A+B1−AB)]⇒ I=∫10{tan−1x−tan−1(1−x)}dx ..(i)Also, I=∫10{tan−1(1−x)−tan−1(1−(1−x))}dx [∵ ∫a0f(x) dx−∫a0f(a−x)dx]⇒ I=∫10[tan−1(1−x)−tan−1(x)]dx ...(ii)
On adding Eqs. (i) and (ii), we get
2I = 0 ⇒ I = 0. Hence, option (b) is correct.