Choose the correct answer. The value of
∫π2−π2(x3+xcosx+tan5x+1)dx is
(a) zero (b) 2 (c) π (d) 1
Let ∫π2−π2(x3+x cos x+tan5 x+1)dx is⇒I=∫π2−π2x3 dx+∫π2−π2xcos x dx+∫π2−π2tan5xdx+∫π2−π21dx
We know that ∫a−af(x)dx={2∫a0f(x) dx, f (x) is even0, if f(x) is odd∴I=0+0+0+2∫π201dx.∴I=2[x]π20=2π2=π
Hence the correct option is (c)