Choose the correct option: If sinA+cosA=x and sin3A+cos3A=y, then:
A
x3+2x−3y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x3+3x+2y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x3−3x+2y=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
x3−3x−2y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cx3−3x+2y=0 y=(sinA)3+(cosA)3⇒y=(sinA+cosA)(sin2A+cos2A−sinAcosA)[usinga3+b3=(a+b)(a2−ab+b2)]⇒y=x(sin2A+cos2A+2sinAcosA−3sinAcosA)⇒y=x[(sinA+cosA)2−3sinAcosA]⇒y=x[x2−3sinAcosA]→(1) Now, x=sinA+cosA⇒x2=(sin2A+cos2A)+2sinAcosA⇒x2−12=sinAcosA→(2) ∴ from (1) y=x[x2−32(x2−1)]⇒y=x(32−x22)⇒2y=3x−2⇒x3−3x+2y=0